Markov Random Field Segmentation Of Brain MR Images - Medical Imaging, IEEE Transactions on
نویسندگان
چکیده
We describe a fully-automatic three-dimensional (3-D)-segmentation technique for brain magnetic resonance (MR) images. By means of Markov random fields (MRF’s) the segmentation algorithm captures three features that are of special importance for MR images, i.e., nonparametric distributions of tissue intensities, neighborhood correlations, and signal inhomogeneities. Detailed simulations and real MR images demonstrate the performance of the segmentation algorithm. In particular, the impact of noise, inhomogeneity, smoothing, and structure thickness are analyzed quantitatively. Even single-echo MR images are well classified into gray matter, white matter, cerebrospinal fluid, scalp-bone, and background. A simulated annealing and an iterated conditional modes implementation are presented.
منابع مشابه
Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملAutomated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کاملEM algorithm for image segmentation initialized by a tree structure scheme
In this correspondence, the objective is to segment vector images, which are modeled as multivariate finite mixtures. The underlying images are characterized by Markov random fields (MRFs), and the applied segmentation procedure is based on the expectation-maximization (EM) technique. We propose an initialization procedure that does not require any prior information and yet provides excellent i...
متن کاملAutomated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field
A variety of algorithms have been proposed for brain tumor segmentation from multi-channel sequences, however, most of them require isotropic or pseudo-isotropic resolution of the MR images. Although co-registration and interpolation of low-resolution sequences, such as T2-weighted images, onto the space of the high-resolution image, such as T1-weighted image, can be performed prior to the segm...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کامل